Total Synthesis of (\pm)-Culmorin and (\pm)-Longiborneol: An Efficient Construction of Tricyclo[6.3.0.033] undecan-10-one by Intramolecular Double Michael Addition

Kiyosei Takasu,* Sayaka Mizutani, Miho Noguchi, Kei Makita, and Masataka Ihara*,t
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, J apan

Recei ved February 9, 2000

The treatment of 4-[(5E)-6-methoxycarbonyl-5-hexenyl]-3,4-dimethyl-2-cyclopenten-1-one (5) with LHMDS, TMSI-HMDS, $\mathrm{Bu}_{2} \mathrm{OTf}-\mathrm{HMDS}$, or TMSCI-NEt $\mathrm{T}_{3}-\mathrm{ZnCl}_{2}$ caused the intramolecular double Michael addition to afford tricyclo[6.3.0.03,9]undecan-10-one $\mathbf{1 2}$ in high yields with perfect stereoselectivity. The methodology was further elaborated to achieve efficient total syntheses of (\pm)-culmorin (1) and (\pm)-longi borneol (2). The common precursor $\mathbf{1 3}$ of them was obtained from 14 in 94% yield as a single isomer by the treatment with LHMDS. After the conversion of $\mathbf{1 3}$ into the corresponding acid $\mathbf{2 4}$ by hydrolysis, oxidative decarboxylation using S-(1-oxido-2-pyridinyl)-1,1,3,3tetramethylthiouronium hexafluorophosphate (HOTT, 27), followed by the Birch reduction, stereoselectively afforded (\pm)-culmorin (1). (\pm)-Longiborneol (2) was synthesized from 24 by the standard transformation. Additionally, the treatment of $\mathbf{2 4}$ with $\mathrm{Pb}(\mathrm{OAC})_{4}$ led to $\mathbf{2 8}$ via uncommon migration. Its structure was determined by X-ray analysis after the transformation into the diketone 29.

Introduction

Culmorin (1) ${ }^{1}$ and longiborneol (juniperol, macrocarpol; 2) ${ }^{2,3}$ are longifolane sesquiterpenes having a tricyclo[6.3.0.0 ${ }^{3,9}$]undecane skeleton; the framework sometimes appears in natural products, e.g., (+)-longifolene (3) ${ }^{4}$ and (+)-longicyclene (4) ${ }^{5}$ (Figure 1). (-)-Culmorin (1) was isolated as a metabolite of Fusarium culmorum with antifungal activity against a variety of fungi, especially ones in wheat and corn. ${ }^{6}(+)$-Longiborneol (2) and its antipode were isolated from Cupressus macrocarpa ${ }^{2 a}$ and Scapenia undulata, ${ }^{3}$ respectively. Although there have been several efforts to synthesize these natural products, their strategies were not very simple; especially the tactics employed for the construction of the tricyclic ring system were almost stepwise. In 1969, Welch reported the total synthesis of $\mathbf{1}$ by utilizing the Dieckman condensation twice to form a tricyclic skeleton, but the chemical yield and the stereoselectivity were unsatisfactory. ${ }^{7}$ Welch and M oney independently reported the total synthesis of 2. ${ }^{8,9}$ Additionally, Nayak reported the partial synthesis of (+)-1 from naturally occurring (+)-longifolene (3) in 10 steps with low yield. ${ }^{10}$

[^0]
(+)-culmorin ${ }^{a}(1)$

(+)-longifolene (3)

OH
(+)-longiborneol (2)

(+)-longicyclene (4)

Figure 1. Key: (a) The antipode of the natural product (-)-1 is shown.

Recently, we have reported highly stereoselective constructions of the tricyclo[5.3.0.0 ${ }^{3,8}$]decane and tricyclo[6.3.0.0 ${ }^{3,9}$]undecane frameworks ${ }^{11}$ utilizing the intramolecular double Michael addition ${ }^{12,13}$ under several conditions (Scheme 1). This strategy has advantages for the following reasons. First, the tricyclo system could be built in a single operation. Second, several protective and

[^1]

Scheme 1

Scheme 2a

11
5

12
${ }^{\text {a }}$ Conditions: (a) $\mathrm{NaCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}, \mathrm{I}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OTBDMS}$ (7); (b) $\mathrm{NaCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}, \mathrm{Mel}\left(45 \%\right.$ for two steps); (c) $250{ }^{\circ} \mathrm{C}$ in Ph2O (79\%); (d) MeLi; (e) PCC, $4 \AA$ molecular sieves (75% for two steps); (f) TBAF (94\%); (g) PCC, $4 \AA$ molecular sieves; (h) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ (57\% for two steps); (i) see Table 1.
deprotective processes could be omitted. Finally, the stereo- and regioselectivities could be highly controlled. Herein, we report efficient syntheses of (\pm)-culmorin (1) and (\pm)-Iongiborneol (2) by the application of this methodology. ${ }^{14}$

Results and Discussion

Construction of Tricyclo[6.3.0.03,9]undecan-10one as a Preliminary Experiment. We first planned the intramolecular double Michael addition of the β methylcyclopentenone derivative 5 as a model reaction (Scheme 2). α-Alkylation of the known ketone $\mathbf{6}^{15}$ using the iodide 7, ${ }^{16}$ followed by α-methylation, led to 8 . The retro Diels-Alder reaction of 8 at a high temperature (ca. $250^{\circ} \mathrm{C}$) provided 9 . After 1,2-addition of MeLi to the enone 9, the corresponding allyl al cohol was oxidized by PCC in the presence of $4 \AA$ molecular sieves to give the O-migrated enone 10. After its deprotection, oxidation of $\mathbf{1 0}$ with PCC in the presence of $4 \AA$ molecular sieves, followed by the Wittig olefination, afforded the (E)- α, β unsaturated ester 5 as the key substrate.

According to our previous studies, ${ }^{11,12}$ the intramolecular double Michael addition was performed under four representative conditions: (A) LHMDS, ${ }^{12 \mathrm{~b}}$ (B) TMSI-

[^2]Table 1. Intramolecular Double Michael Addition of 5

entry	conditions	yield (\%) ${ }^{\text {a }}$
1	(A) LHMDS, $-78{ }^{\circ} \mathrm{C}$	87
2	(B) TMSI, HMDS, $0^{\circ} \mathrm{C}$ to rt	79
3	(C) $\mathrm{Bu}_{2} \mathrm{OTf}, \mathrm{HMDS}, 0^{\circ} \mathrm{C}$ to rt	69
4	(D) $\mathrm{TMSCl}, \mathrm{NEt}_{3}, \mathrm{ZnCl}_{2}, 180{ }^{\circ} \mathrm{C}$	46

a No diastereoisomer was obtained in all conditions.

Scheme 3

HMDS, ${ }^{11,17,18}$ (C) Bu ${ }_{2} B O T f-H M D S,{ }^{11,19}$ and (D) TMSCI-$\mathrm{NEt}_{3}-\mathrm{ZnX}_{2}^{11,20}$ (Table 1). Under all conditions, the tricyclic product 12 was obtained as the sole diastereoisomer in 46-87\% yield, and formation of the mono Michael adduct was not observed; especially condition A gave the best yield. The stereochemistry of 12 was confirmed on the basis of the long-range coupling () = 2.2 Hz) derived from the W-shaped configuration between the $C(2)$ and $C(11)$ equatorially oriented hydrogens in the ${ }^{1} \mathrm{H}$ NMR spectrum. The complete stereoselectivity under these conditions can be explained by a chelated transition state. The chelation among one oxygen of the ester group, another oxygen of the enolate derived from the enone, and the countercation should fix the conformation of the transition state.

Construction of the (\pm)-Culmorin Skeleton. Since we succeeded in the efficient construction of the tricyclo[6.3.0.0 ${ }^{3,9}$]undecan-10-one system for the above model system, the retrosynthetic analysis for (\pm)-culmorin (1) and (\pm)-l ongi borneol (2) using the intramolecular double Michael addition as the key step was designed (Scheme $3)$. (\pm)-Culmorin and (\pm)-longiborneol would be derived through stereoselective reduction of the ketone and oxidative decarboxylation from 13 . The tricyclo[6.3.0.03,9]-undecan-10-one derivative $\mathbf{1 3}$ could be obtained by the intramolecular double Michael addition of 14, which can be transformed from the cyclopentenone 15. α-Alkylation of the known ketone 16^{21} with 17 would afford 15.
The side chain moiety $\mathbf{1 7}$ was synthesized as follows (Scheme 4). O-Protection of $\mathbf{1 8} \mathbf{1 8}^{22}$ with theTBDMS group,

[^3]
a Conditions: (a) TBDMSCI, NEt ${ }_{3}$, DMAP (93\%); (b) BH 3 .THF; $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$ (95\%); (c) $\mathrm{PPh}_{3}, \mathrm{I}_{2}$, imidazole (92\%).

${ }^{\text {a }}$ Conditions: (a) $\mathrm{NaCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}, \mathbf{1 7}$ (94\%); (b) $250^{\circ} \mathrm{C}$ in $\mathrm{Ph}_{2} \mathrm{O}$ (84\%); (c) MeLi; (d) PCC, 4 Å molecular sieves (87% for two steps); (e) TBAF (98\%); (f) PCC, $4 \AA$ molecular sieves; (g) NaH , (MeO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ (88% for two steps); (h) see Table 2.

Table 2. Intramolecular Double Michael Addition of 14

entry	conditions	yield (\%)
1	(A) $\mathrm{LHMDS},-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	94
2	(B) $\mathrm{TMSI}, \mathrm{HMDS}, 0^{\circ} \mathrm{C}$ to rt	0
3	(C) $\mathrm{Bu} \mathrm{OHTF}_{2}, \mathrm{HMDS}, 0^{\circ} \mathrm{C}$ to rt	0
4	(D) $\mathrm{TMSCl}, \mathrm{NEt}_{3}, \mathrm{ZnBr}_{2}$, reflux	39

${ }^{\text {a }}$ No diastereoisomer was obtained in all conditions.
followed by hydroboration-oxidation of 19, gave the corresponding alcohol 20, which was converted into $\mathbf{1 7}$ using PPh_{3} and $\mathrm{I}_{2} .{ }^{23}$ The construction of the culmorin precursor 13 is depicted in Scheme 5. Thus, 21 was obtained by α-alkylation of $\mathbf{1 6}^{21}$ using 17, and then converted into $\mathbf{1 5}$ by pyrolysis. Using the same procedure as for the formation of $\mathbf{1 1}$ from 9, the alcohol $\mathbf{2 3}$ was produced from 15 via $\mathbf{2 2}$. The oxidation of 23, followed by the Horner-Wadsworth-Emmons olefination, afforded the (E)- α, β-unsaturated ester 14.

The intramolecular double Michael addition of $\mathbf{1 4}$ was investigated under the above four conditions A-D (Table 2). Condition A , carried out with LHMDS at $-78^{\circ} \mathrm{C}$, gave the expected compound $\mathbf{1 3}$ as the sole stereoisomer in quite high yield (94% yield). The same product 13 was obtained in 39% yield by the treatment of 14 with $\mathrm{TMSCI}-\mathrm{NEt}_{3}-\mathrm{ZnBr}_{2}$ at a refluxing temperature (condition D). The stereochemistry of $\mathbf{1 3}$ was determined by its ${ }^{1} \mathrm{H}$ NMR spectrum in the same manner as for the tricyclic compound $\mathbf{1 2}$ (long-range coupling, J $=1.8 \mathrm{~Hz}$). On the other hand, neither condition B nor condition C gave the desired compound $\mathbf{1 3}$ (only produced complicated adducts as inseparable mixtures). We postulate,

[^4]
Scheme 6a

a Conditions: (a) KOH (100\%); (b) see Table 3; (c) PCC (99\%).

Figure 2. ORTE P drawing of 29.
under the conditions of B and C for 14, the steric hindrance caused by dimethyl substituents of the side chain moiety interrupts the selective intramolecular Michael addition during the first stage. On the contrary, in the case of 5, the first Michael addition could be performed more easily and selectively.
Transformation into Hydroxyketones from Ketoester 13. The hydrolysis of $\mathbf{1 3}$ quantitatively gave 24. The next step was the conversion of the carboxylic group into the hydroxyl function at the $C(2)$ position of $\mathbf{2 4}$ by the oxidative decarboxylation reaction (Scheme 6). We attempted several conditions, and the results are shown in Table 3.

A typical Barton procedure utilizing 2-mercaptopyridine N-oxide (25) ${ }^{24}$ gave the desired alcohol 26 in 48\% yield as the sole stereoisomer (entry 1). The compound 26 had been synthesized by degradation of natural culmorin. ${ }^{1 b, c}$ This compound also exhibited long-range coupling ($J=1.6 \mathrm{~Hz}$) between the hydrogens at $\mathrm{C}(2)$ and C(11). Recently, Garner has reported an improved Barton method employing S-(1-oxido-2-pyridinyl)-1,1,3,3-tetramethylthiouronium hexafluorophosphate (HOTT, 27) ${ }^{25}$ We applied this method to the oxidative decarboxylation of $\mathbf{2 4}$ under an O_{2} current. When the reaction was carried out in THF-benzene, the desired alcohol 26 and the undesired alcohols $\mathbf{2 8}^{10}$ were obtained in 38% and 10% yields, respectively (entry 2). However, when 1,4-dioxane

[^5]Table 3. Oxidative Decarboxylation of $\mathbf{2 4}$

entry	conditions	yield of $\mathbf{2 6}$ (\%) ${ }^{\text {a }}$	yield of $\mathbf{2 8}$ (\%) ${ }^{\text {a }}$
1	(i) $\mathrm{NaH},(\mathrm{COCl})_{2}$; (ii) 25, $\mathrm{NaH}, \mathrm{t}-\mathrm{BuSH}, \mathrm{O}_{2}$, toluene, $80{ }^{\circ} \mathrm{C} ; \mathrm{P}(\mathrm{OMe})_{3}$	48	0
2	HOTT (27), NEt_{3}, DMAP, THF; t-BuSH, O_{2}, benzene, $80{ }^{\circ} \mathrm{C} ; \mathrm{P}(\mathrm{OMe})_{3}$	38	10
3	HOTT (27), NEt_{3}, DMAP, 1,4-dioxane; t-BuSH, $\mathrm{O}_{2}, 80^{\circ} \mathrm{C}$; $\mathrm{P}(\mathrm{OMe})_{3}$	82	8
4	(i) $\mathrm{Pb}(\mathrm{OAC}) 4$, pyridine, benzene, reflux; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$	0	50

a I solated yield.

25

Scheme 7

$\sqrt{5}$

26

28
was employed as the solvent, the yield of $\mathbf{2 6}$ increased to 82% and 28 was provided in 8% yield (entry 3). On the other hand, oxidative decarboxylation with Pb (OAc) $)_{1,}{ }^{26}$ followed by hydrolysis, afforded only a 5:1 epimeric mixture of regioisomeric alcohols 28 in 50\% yield (entry 4). Their structures were determined by X-ray crystallography after oxidation of $\mathbf{2 8}$ to the diketone $\mathbf{2 9}{ }^{27}$ (Figure 2). This revealed that the free radical generated from the carboxylic function had migrated to the $C(6)$ position from $C(2)$.

A plausible mechanism can be proposed as indicated in Scheme 7. The desired product 26 could be obtained through path A. Thus, the radical intermediate \mathbf{A} generated from the ketoester would be directly trapped by O_{2} to give 26. On the other hand, the formation of $\mathbf{2 8}$ by $\mathrm{Pb}(\mathrm{OAc})_{4}$ could be explained by the 1,5 -hydrogen abstraction ${ }^{28}$ of the radical species (path B). The intermediate A would be interconverted to B by 1,5-hydrogen abstraction before the oxidation of $\mathrm{Pb}(\mathrm{OAc})_{4}$, which is a larger molecule than O_{2}, because of the steric repulsion among that surrounding C(2). The radical intermediate B would then be oxidized to the corresponding cationic species, which was reacted with the acetate anion to yield the corresponding acetates. Consequently, the regioisomeric alcohols 28 were obtained.

Syntheses of Culmorin and Longi borneol. Barton had briefly mentioned the reduction of 26 to $\mathbf{1}$ with Na and i-PrOH (no detailed experimental procedure); however, its yield was low (ca. 14\%), and the stereosel ectivity at the $C(10)$ position was not described. ${ }^{1 b}$ We achieved an improvement in this transformation. Thus, Birch

[^6]
Scheme 8

Scheme 9a

a Conditions: (a) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SH}_{1} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; (b) Raney $\mathrm{Ni}(50 \%$ for two steps); (c) HOTT (27), NEt ${ }_{3}$, DMAP, 1,4-dioxane; t-BuSH, O_{2}, $80^{\circ} \mathrm{C}$; $\mathrm{P}(\mathrm{OMe})_{3}(51 \%)$.
reduction at low temperature quantitatively gave only the desired stereoisomer $\mathbf{1}$ (Scheme 8). Spectral data of the synthetic compound $\mathbf{1}$ were very consistent with the reported data. ${ }^{1 c}$
(\pm)-Longiborneol (2) was synthesized from the keto carboxylic acid 24 (Scheme 9). After dithioketalization of $\mathbf{2 4}$ using 1,2-ethanedithiol and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, the corresponding dithioketal was treated with W-2 Raney Ni to afford 30. The oxidative decarboxylation utilizing the HOTT method (see above) provided (\pm)-longiborneol (2). Spectral properties (${ }^{1} \mathrm{H}$ NMR and IR) of $(\pm)-2$ were identical to the reported data. ${ }^{8}$

Conclusion

The application of the intramolecular double Michael addition of cyclopentenones having an α, β-unsaturated ester moiety permits the rapid assembly of the tricyclo-[6.3.0.03,9]undecan-10-one system with complete stereoselectivity. This methodology was applied to total syntheses of (\pm)-culmorin (1) (11 steps, 46% overall yield) and (\pm)-longiborneol (2) (12 steps, 14% overall yield). In addition, an unusual O-migration was observed during the oxidative decarboxylation of $\mathbf{2 4}$ using $\mathrm{Pb}(\mathrm{OAc})_{4}$.

Experimental Section

General Procedure. All reactions were carried out under a positive atmosphere of N_{2} or Ar unless otherwise indi cated. Anhydrous THF, $\mathrm{Et}_{2} \mathrm{O}$, 1,4-dioxane, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purchased from the Kanto Chemical Co., Inc. Toluene, benzene, DME, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, o-dichlorobenzene, and NEt_{3} were distilled from CaH_{2}. HMDS and DMSO were distilled from CaH_{2} under reduced pressure. Unless otherwise described, the materials were obtained from commercial suppliers and used without further purification. Organic extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure using an
evaporator. The ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75 MHz , respectively, and were reported in parts per million downfield from TMS $(\delta=0)$ for the ${ }^{1} \mathrm{H}$ NMR and relative to the central CDCl_{3} resonance $(\delta=77.00)$ for the ${ }^{13} \mathrm{C}$ NMR.
(\pm)-(1S*,2R*,4S*,6S*,7R*)-4-(5-tert-Butyldimethylsiloxy-pentyl)-4-methyltricyclo[5.2.1.0 ${ }^{2,6}$]deca-8-en-3-one (8). A suspension of $\mathrm{NaH}(55 \%$ in oil; $0.68 \mathrm{~g}, 16 \mathrm{mmol}$) in DMSO (50 mL) was stirred at $60^{\circ} \mathrm{C}$ until the end of the generation of H_{2} gas and then cooled to $r t$. To the resulting solution was added a solution of $6^{15}(2.09 \mathrm{~g}, 14.1 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ slowly at rt , and the mixture was stirred for 1 h . To this was added a solution of $7^{16}(6.95 \mathrm{~g}, 21.2 \mathrm{mmol})$ in DMSO $(8 \mathrm{~mL})$ at rt . The resulting solution was stirred for 4 h at rt . After dilution with AcOEt, the mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was then dried and concentrated. Column chromatography on silica gel (AcOEt:hexane $=1: 39, \mathrm{v} / \mathrm{v}$) afforded the corresponding α-alkylated ketone ($1.49 \mathrm{~g}, 50 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.24$ (dd, $1 \mathrm{H}, \mathrm{J}=5.7$, $2.9 \mathrm{~Hz}), 6.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.7,3.0 \mathrm{~Hz}), 3.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5$ $\mathrm{Hz}), 3.24-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91-2.79(\mathrm{~m}$, 2 H), 1.90 (ddd, $1 \mathrm{H}, \mathrm{J}=13.5,8.1,4.4 \mathrm{~Hz}), 1.79$ (ddd, $1 \mathrm{H}, \mathrm{J}=$ $13.5,9.9,1.9 \mathrm{~Hz}), 1.68-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.33-$ $0.90(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;$ IR (neat) 1730, 1105 cm^{-1}; LRMS m/z 291 (M+ - t-Bu). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}$: C, 72.36; H, 10.41. Found: C, 72.15; H, 10.52.

A suspension of $\mathrm{NaH}(55 \%$ in oil; $0.28 \mathrm{~g}, 6.4 \mathrm{mmol})$ in DMSO (15 mL) was stirred at $60^{\circ} \mathrm{C}$ until the end of the generation of H_{2} gas and then cooled to rt. To the resulting solution was added a solution of the above ketone ($1.49 \mathrm{~g}, 4.27 \mathrm{mmol}$) in DMSO (3 mL) slowly at rt , and the mixture was stirred for 1 h . To this was added $\mathrm{Mel}(1.32 \mathrm{~mL}, 21.3 \mathrm{mmol})$ at rt . The resulting solution was stirred for 4 h at rt . After the same workup as above, the resulting residue was purified by column chromatography on silica gel (AcOEt:hexane $=3: 97, \mathrm{v} / \mathrm{v}$) to give $8(1.39 \mathrm{~g}, 90 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.14$ (dd, 1H, J = 5.8, 2.7 Hz), 6.05 (dd, 1 H , J $=5.5,2.7 \mathrm{~Hz}$), 3.57 $(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.15-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 2 \mathrm{H})$, 1.75 (dd, 1H, J = 13.5, 9.1 Hz), 1.63-1.58 (m, 1H), 1.53-1.44 $(\mathrm{m}, 3 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 7 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 222.9,137.2,135.5,63.3,54.2,53.7$, 52.5, 46.1, 44.3, 37.4, 35.4, 32.8, 26.5, 26.0, 25.1, 24.1, 18.4, 5.3; IR (neat) $1735 \mathrm{~cm}^{-1}$; LRMS m/z 305 (M+ - t-Bu). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 72.87 ; \mathrm{H}, 10.56$. Found: $\mathrm{C}, 73.01 ; \mathrm{H}$, 10.78.

5-(5-tert-Butyldimethylsiloxypentyl)-5-methyl-2-cyclo-penten-1-one (9). A solution of $8(551 \mathrm{mg}, 1.52 \mathrm{mmol})$ in diphenyl ether (4 mL) was stirred for 1 h at $250^{\circ} \mathrm{C}$. After being cooled, the mixture was directly purified by column chromatography on silica gel (AcOEt:hexane $=1: 9 \mathrm{v} / \mathrm{v}$) to give 9 (355 $\mathrm{mg}, 79 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}$ $=5.8,2.7 \mathrm{~Hz}), 6.14(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=5.8,2.2 \mathrm{~Hz}), 3.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 6.6 Hz), 2.65 (ddd, 1H, J = 19.2, 2.7, 2.5 Hz), 2.41 (ddd, 1H, J $=19.2,2.5,2.2 \mathrm{~Hz}), 1.64-1.10(\mathrm{~m}, 8 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 215.3,162.7,133.1,63.2$, $46.3,43.0,38.0,32.7,26.4,26.0,24.4,23.8,18.3,-5.4$; IR (neat) $1715 \mathrm{~cm}^{-1}$; LRMS m/z $239\left(\mathrm{M}^{+}-\mathrm{t}-\mathrm{Bu}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 68.86 ; \mathrm{H}, 10.88$. Found: C, 68.61: H, 10.94 .

4-(5-tert-Butyldimethylsiloxypentyl)-3,4-dimethyl-2-cyclopenten-1-one (10). To a solution of $9(855 \mathrm{mg}, 2.85$ mmol) in THF (15 mL) was added MeLi (1.02 M solution in $\mathrm{Et}_{2} \mathrm{O} ; 8.37 \mathrm{~mL}, 8.54 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 40 min at $-78^{\circ} \mathrm{C}$, and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with saturated NaHCO_{3} and brine. The organic layer was dried and concentrated. To a solution of the resulting residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $4 \AA$ molecular sieves (1 g) and PCC ($920 \mathrm{mg}, 4.27 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. After being stirred for 10 min at $0^{\circ} \mathrm{C}$, the mixture was warmed to rt and stirred for an additional 1 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$ and the addition of F lorisil, the mixture was filtered through Celite. Evaporation of the filtrate gave a residue which was purified by column chromatography on silica gel (AcOEt:hexane = 1:4, v/v) to give 10 ($662 \mathrm{mg}, 75 \%$ for two steps) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$
1.2 Hz), $3.58(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 2.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.5 \mathrm{~Hz})$, 2.13 (d, 1H, J = 18.5 Hz), $1.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 1.60-1.21$ $(\mathrm{m}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.17-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 208.4,184.9,130.6,63.1,48.3,46.4$, $38.4,32.7,26.3,26.0,25.8,24.5,18.3,14.3,-5.4$; IR (neat) $1715 \mathrm{~cm}^{-1}$; LRMS m/z 253 (M+ - t-Bu). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 69.62 ; \mathrm{H}, 11.03$. Found: C, 69.54; H, 10.97.

4-(5-H ydroxypentyl)-3,4-dimethyl-2-cyclopenten-1one (11). To a solution of $\mathbf{1 0}$ ($662 \mathrm{mg}, 2.13 \mathrm{mmol}$) in THF (10 mL) was added TBAF (1.0 M solution in THF; $2.99 \mathrm{~mL}, 2.99$ mmol) at $0^{\circ} \mathrm{C}$, which was stirred for 2 h at rt . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with saturated NaHCO_{3} and brine. The organic layer was dried and concentrated. The residue was purified by column chromatography on silica gel (AcOEt:hexane = 7:3, v/v) to give 11 ($392 \mathrm{mg}, 94 \%$) as a col orless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 3.63$ $(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.5 \mathrm{~Hz}), 2.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $18.5 \mathrm{~Hz}), 1.99(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 1.60-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{~s}$, 3H), 1.17-0.96 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 208.4,184.9,130.6$, 62.8, 48.2, 46.4, 38.4, 32.5, 26.2, 25.8, 24.5, 14.2; IR (neat) 3425, $1695 \mathrm{~cm}^{-1}$; LRMS m/z $196\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 73.43; H, 10.27. Found: C, 72.99; H, 10.41.

4-[(5E)-6-Methoxycarbonyl-5-hexenyl]-3,4-dimethyl-2-cyclopenten-1-one (5). To a solution of $\mathbf{1 1}(376 \mathrm{mg}, 1.92$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added $4 \AA$ molecular sieves $(0.7 \mathrm{~g})$ and PCC ($743 \mathrm{mg}, 3.45 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred for 10 min at $0^{\circ} \mathrm{C}$, the mixture was warmed to rt and stirred for an additional 2 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$ and the addition of Florisil, the mixture was filtered through Celite, and then the filtrate was concentrated to give the corresponding crude aldehyde. A mixture of this crude aldehyde and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(1.28 \mathrm{~g}, 3.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred for 14 h at rt. After concentration, the mixture was directly purified by column chromatography on silica gel (AcOEt:hexane $=2: 3, \mathrm{v} / \mathrm{v}$) to give 5 ($273 \mathrm{mg}, 57 \%$ for two steps) as a colorless oil: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 6.93(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=15.7$, $6.9 \mathrm{~Hz}), 5.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}), 5.81(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=15.7,1.6$ $\mathrm{Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.7 \mathrm{~Hz}), 2.19(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ $16.5,6.9,1.6 \mathrm{~Hz}), 2.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.7 \mathrm{~Hz}), 1.99(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $1.1 \mathrm{~Hz}), 1.58-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$, 1.08-1.01 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 208.1, 184.5, 167.2, 149.1, 130.6, 121.2, 51.4, 48.1, 46.3, 38.1, 31.9, 28.4, 25.7, 24.2, 14.2; IR (neat) 1720, $1660 \mathrm{~cm}^{-1}$; LRMS m/z $250\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 71.97 ; \mathrm{H}, 8.86$. Found: $\mathrm{C}, 71.78 ; \mathrm{H}$, 8.93.
(\pm)-(1S*,2S*,3R*,8S*,9R*)-2-Methoxycar bonyl-1,8dimethyltricyclo[6.3.0.0 ${ }^{3,9}$]undecan-10-one (12). Entry 1 in Table 1. To a solution of $\mathrm{HMDS}(43 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added BuLi (1.56 M in hexane; $99 \mu \mathrm{~L}, 0.15$ mmol). The solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then cooled to $-78^{\circ} \mathrm{C}$. To this was added a solution of $5(26 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 5 h at $-78^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with $10 \% \mathrm{HCl}$ and brine. The organic layer was dried and concentrated. Column chromatography on silica gel (AcOEt:hexane = 7:3, v/v) afforded 12 ($22.4 \mathrm{mg}, 87 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.81$ (dd, 1 H , J $=6.9,2.2 \mathrm{~Hz}$), 2.46 (ddd, 1H, J $=6.9,4.6,2.5 \mathrm{~Hz}), 2.32(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=18.7 \mathrm{~Hz}$), $2.29(\mathrm{~s}, 1 \mathrm{H}), 1.98$ (ddd, $1 \mathrm{H}, \mathrm{J}=18.7,2.2$, $0.8 \mathrm{~Hz}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$, $0.94(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 215.2,174.5,64.4,52.7,51.9$, 51.8, 51.4, 43.6, 39.6, 35.2, 29.7, 26.6, 25.0, 21.8, 14.1; IR (neat) 1739, $1725 \mathrm{~cm}^{-1}$; LRMS m/z $250\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 71.97 ; \mathrm{H}, 8.86$. Found: C, 71.80; H, 8.94.

Entry 2 in Table 1. To a solution of 5 ($50 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(2 \mathrm{~mL})$ were added HMDS $(0.13 \mathrm{~mL}, 0.61$ mmol) and TMSI ($57 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 h at rt , followed by the same workup and purification procedure as above, yielding 12 ($39 \mathrm{mg}, 79 \%$) as a colorless oil, which was identical with the authentic compound in all respects.

Entry 3 in Table 1. To a solution of 5 ($49 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(2 \mathrm{~mL})$ were added HMDS ($0.13 \mathrm{~mL}, 0.61$ mmol) and $\mathrm{Bu}_{2} \mathrm{BOTf}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.39 \mathrm{~mL}, 0.39 \mathrm{mmol}\right)$ dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 7 h at
rt, followed by the same workup and purification procedure as above, yielding 12 ($34 \mathrm{mg}, 69 \%$) as a col orless oil, which was identical with the authentic compound in all respects.

Entry 4 in Table 1. A mixture of 5 ($26 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}(0.14 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{NEt}_{3}(0.21 \mathrm{~mL}, 1.5 \mathrm{mmol})$, and $\mathrm{TMSCl}(0.13 \mathrm{~mL}, 1.0 \mathrm{mmol})$ in toluene (4 mL) was heated for 22 h at $180^{\circ} \mathrm{C}$ in a sealed tube. After the mixture was cool ed to rt, similar workup and purification as above gave 12 (12 $\mathrm{mg}, 46 \%$) as a colorless oil, which was identical with the authentic compound in all respects.

1-tert-Butyldimethylsiloxy-2,2-dimethyl-4-pentene (19). To a solution of $188^{22}(14.1 \mathrm{~g}, 123 \mathrm{mmol})$, TBDMSCI (22.3 g, $148 \mathrm{mmol})$, and DMAP $(1.51 \mathrm{~g}, 12.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added $\mathrm{NEt}_{3}(25.8 \mathrm{~mL}, 185 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, which was stirred for 10 min at the same temperature. The resulting solution was then stirred for 20 h at rt. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, and concentrated. The residue was purified by column chromatography on silica gel (AcOEt:hexane = 1:9, v/v) to give $19(26.2 \mathrm{~g}, 93 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.88-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.95(\mathrm{~m}, 2 \mathrm{H})$, $3.22(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}$, 6H), 0.02 (s, 6H); IR (neat) $1640 \mathrm{~cm}^{-1}$; LRMS m/z 171 (M+ -t-Bu); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{19}$ OSi 171.1205, found 171.1190.

1-tert-Butyldimethylsiloxy-2,2-dimethyl-5-pentanol (20). To a solution of $19(24.4 \mathrm{~g}, 107 \mathrm{mmol})$ in THF (300 mL) was slowly added borane-THF complex (1.0 M in THF; 160 mL , 160 mmol) at $0{ }^{\circ} \mathrm{C}$. The resulting sol ution was stirred for 4 h at $0^{\circ} \mathrm{C}$. To the mixture were added $3 \mathrm{M} \mathrm{NaOH}(110 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(128 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the stirring was continued for 1 h at rt . The mixture was extracted with AcOEt, and the organic layer was washed with brine, dried, and concentrated. The residue was purified by column chromatography on silica gel (AcOEt:hexane $=2: 3, \mathrm{v} / \mathrm{v}$) to give $20(25.0 \mathrm{~g}, 95 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.61(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.24$ $(\mathrm{s}, 2 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 2 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$; IR (neat) $3330 \mathrm{~cm}^{-1}$; LRMS m/z 189 (M+ - t-Bu). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$: C, $63.35 ; \mathrm{H}, 12.27$. Found: C, 63.33; H, 12.25.

1-tert-B utyIdimethyIsiloxy-2,2-dimethyl-5-i odopentane (17). To a solution of $\mathbf{2 0}(4.26 \mathrm{~g}, 17.3 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ were added imidazole ($2.35 \mathrm{~g}, 34.6 \mathrm{mmol}$), $\mathrm{PPh}_{3}(6.80$ $\mathrm{g}, 25.9 \mathrm{mmol})$, and $\mathrm{I}_{2}(8.77 \mathrm{~g}, 34.6 \mathrm{mmol})$ at rt . The resulting mixture was stirred for 15 min at rt . The mixture was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried, and concentrated. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the insoluble agent was filtered off carefully. The filtrate was concentrated. The residue was purified by column chromatography on silica gel ($\mathrm{Et}_{2} \mathrm{O} /$ hexane $=1: 19, \mathrm{v} / \mathrm{v}$) to give 17 ($5.66 \mathrm{~g}, 92 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.22(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.84-1.73(\mathrm{~m}$, $2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$; IR (neat) $2950 \mathrm{~cm}^{-1}$; LRMS m/z 299 (M+ - t-Bu). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{29}$ OSi: C, 43.82; H, 8.20; I, 35.61. Found: C, 43.85; H, 8.26; I, 35.62.
(\pm)-(1S* $\left.\mathbf{2 R}^{*}, \mathbf{4 R} *, 6 S^{*}, \mathbf{7 R} *\right)$-4-(5-tert-Butyldimethylsiloxy-4,4-dimethylpentyl)-4-methyltricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-3-one (21). A suspension of NaH (55% in oil; $118 \mathrm{mg}, 2.71$ $\mathrm{mmol})$ in DMSO (4 mL) was stirred at $60^{\circ} \mathrm{C}$ until the end of the generation of H_{2} gas and then cool ed to rt . To the resulting sol ution was added a solution of $\mathbf{1 6}^{21}(367 \mathrm{mg}, 2.26 \mathrm{mmol})$ in DMSO (4 mL) slowly at rt , and the resulting solution was stirred for 1 h . To this was added a solution of $\mathbf{1 7}(966 \mathrm{mg}$, 2.71 mmol) in THF (2 mL) slowly at rt . The resulting solution was stirred for 1 h at rt . After dilution with AcOEt, the mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was then dried and concentrated. Column chromatography on silica gel (AcOEt:hexane = 3:97, v/v) afforded 21 ($833 \mathrm{mg}, 94 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.5,2.7 \mathrm{~Hz})$, 6.06 (dd, 1H, J = 5.5, 2.7 Hz), 3.19 (s, 2H), 3.14 (br s, 1H), 3.04 (dd, 1H, J $=9.3,4.4 \mathrm{~Hz}$), 2.96-2.83 (m, 2H), 1.97 (dd, $1 \mathrm{H}, \mathrm{J}=13.7,8.8 \mathrm{~Hz}), 1.61(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 1.46(\mathrm{br} \mathrm{d}$, $1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$), $1.33-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.05(\mathrm{~m}, 5 \mathrm{H}), 0.88$ (s, 9H), 0.82 (s, 3H), 0.78 (s, 6H), 0.00 (s, 6H); IR (neat) 1725 cm^{-1}; LRMS m/z 333 (M ${ }^{+}-\mathrm{t}-\mathrm{Bu}$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}$: C, 73.79; H, 10.84. Found: C, 73.58; H, 10.77.

5-(5-tert-Butyldimethylsiloxy-4,4-dimethylpentyl)-5-methyl-2-cyclopenten-1-one (15). A solution of 21 (14.6 g, 37.3 mmol) in di phenyl ether (60 mL) was stirred for 30 min at $250^{\circ} \mathrm{C}$. After being cooled, the mixture was directly purified by column chromatography on silica gel (AcOEt:hexane =1:19, v / v) to give 15 ($10.2 \mathrm{~g}, 84 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.63(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=5.8,2.2 \mathrm{~Hz}), 6.14(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=5.8,2.2 \mathrm{~Hz})$, $3.19(d, 1 H, J=9.6 H z), 3.16(d, 1 H, J=9.6 H z), 2.65(d t, 1 H$, $\mathrm{J}=18.0,2.2 \mathrm{~Hz}), 2.41(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=18.0,2.2 \mathrm{~Hz}), 1.47-1.31$ $(\mathrm{m}, 2 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.05-0.94(\mathrm{~m}, 1 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.772(\mathrm{~s}, 3 \mathrm{H}), 0.767(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$; IR (neat) 1715, $1595 \mathrm{~cm}^{-1}$; LRMS m/z 267 (M+ - t-Bu). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 70.31 ; \mathrm{H}, 11.18$. Found: C, $70.54 ; \mathrm{H}, 11.08$.

4-(5-tert-Butyldimethylsiloxy-4,4-dimethylpentyl)-3,4-dimethyl-2-cyclopenten-1-one (22). To a solution of $\mathbf{1 5}$ (4.59 $\mathrm{g}, 14.1 \mathrm{mmol}$) in THF (50 mL) was added MeLi (1.01 M solution in $\mathrm{Et}_{2} \mathrm{O} ; 28.0 \mathrm{~mL}, 28.3 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h at rt , and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at the $0^{\circ} \mathrm{C}$. After extraction with $E t_{2} \mathrm{O}$, the mixture was washed with brine. The organic layer was dried and concentrated to give the corresponding crude al cohol. To a solution of the crude alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ mL) were added $4 \AA$ molecular sieves (5 g) and PCC (4.57 g , 21.2 mmol) at $0^{\circ} \mathrm{C}$. After being stirred for 10 min at $0^{\circ} \mathrm{C}$, the mixture was warmed to rt and stirred for an additional 1 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$ and the addition of Florisil, the mixture was filtered through Celite. Evaporation of the filtrate gave a residue which was purified by column chromatography on silica gel (AcOEt:hexane = 1:9, v/v) to give $22(4.17 \mathrm{~g}, 87 \%$ for two steps) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.84$ (d, $1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.4 \mathrm{~Hz}), 2.13$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=18.4 \mathrm{~Hz}), 1.98(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}), 1.61-0.89(\mathrm{~m}$, $6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}), 0.00$ ($\mathrm{s}, 6 \mathrm{H}$); IR (neat) $1695,1620 \mathrm{~cm}^{-1}$; LRMS m/z 281 (M^{+}- t-Bu). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}$: C, 70.94; H, 11.31. Found: C, 70.87; H, 11.21.

4-(5-Hydroxy-4,4-dimethylpentyl)-3,4-dimethyl-2-cy-clopenten-1-one (23). To a solution of $22(1.93 \mathrm{~g}, 5.71 \mathrm{mmol})$ in THF (24 mL) was added TBAF (1.0 M solution in THF; 11.4 $\mathrm{mL}, 11.4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, which was stirred for 5.5 h at rt . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with brine. The organic layer was dried and concentrated. The residue was purified by column chromatography on silica gel (AcOEt:hexane $=1: 1, \mathrm{v} / \mathrm{v}$) to give 23 ($1.26 \mathrm{~g}, 98 \%$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=18.4 \mathrm{~Hz}), 2.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.4 \mathrm{~Hz}), 1.99(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.1$ $\mathrm{Hz}), 1.70-0.88(\mathrm{~m}, 7 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ d 208.5, 185.1, 130.6, 71.9, 48.2, 46.5, 39.3, 39.1, 35.1, $25.8,23.79,23.76,19.0,14.3$; IR (neat) $3425,1685,1620 \mathrm{~cm}^{-1}$; LRMS m/z 224 (M^{+}- t-Bu); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ 224.1776, found 224.1783.

4-[(5E)-6-Methoxycar bonyl-4,4-dimethyl-5-hexenyl]-3,4-dimethyl-2-cyclopenten-1-one (14). To a solution of 23 $(2.30 \mathrm{~g}, 10.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added $4 \AA$ molecular sieves (4.5 g) and PCC $(4.42 \mathrm{~g}, 20.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 10 min at $0^{\circ} \mathrm{C}$, the mixture was warmed to rt and stirred for an additional 2.5 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$ and the addition of Florisil, the mixture was filtered through Celite, and then the filtrate was concentrated to give the corresponding crude aldehyde. To a suspension of NaH (55% in oil; $537 \mathrm{mg}, 12.3 \mathrm{mmol}$) in DME (90 mL) was slowly added trimethyl phosphonoacetate ($2.16 \mathrm{~mL}, 13.3 \mathrm{mmol}$) at rt , which was stirred for 3.5 h at the same temperature. To this at $0^{\circ} \mathrm{C}$ was slowly added a solution of the above aldehyde in DME (4 mL), which was stirred for 2 h at rt . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with brine. The organic layer was dried and concentrated. The residue was purified by column chromatography on silica gel (AcOEt:hexane $=1: 4$, v / v) to give $\mathbf{1 4}(2.51 \mathrm{~g}, 88 \%)$ as a col orless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}), 5.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 5.70(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.4 \mathrm{~Hz}), 2.12$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=18.4 \mathrm{~Hz}), 1.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 1.67-0.80(\mathrm{~m}$, 6 H), 1.18 ($\mathrm{s}, 3 \mathrm{H}$), 1.02 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 208.2,184.8$, $167.7,158.2,130.5,117.7,51.5,48.1,46.4,42.6,39.0,36.7,26.2$, 25.6, 19.6, 14.2; IR (neat) $1720,1685,1650,1615 \mathrm{~cm}^{-1}$; LRMS
$\mathrm{m} / \mathrm{z} 278\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}$: $\mathrm{C}, 73.35 ; \mathrm{H}, 9.41$. Found: C, 73.09; H, 9.23.
(\pm)-(1S* ${ }^{*}$ 2S* $\left.^{*}, 3 R^{*}, \mathbf{8 S}{ }^{*}, 9 R^{*}\right)$-2-Methoxycarbonyl-1,4,4,8tetramethyltricyclo[6.3.0.0 ${ }^{3,9}$]undecan-10-one (13). Entry 1 in Table 2. To a sol ution of HMDS ($1.16 \mathrm{~mL}, 5.52 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added BuLi $(1.54 \mathrm{M}$ in hexane; 2.69 $\mathrm{mL}, 4.14 \mathrm{mmol})$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added a solution of $\mathbf{1 4}$ (768 $\mathrm{mg}, 2.76 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and for an additional 3 h at $0^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with $10 \% \mathrm{HCl}$ and brine. The organic layer was dried and concentrated. Column chromatography on silica gel (AcOEt:hexane $=1: 9, v / v$) and recrystallization from $i-\mathrm{Pr}_{2} \mathrm{O}$ afforded $\mathbf{1 3}$ ($724 \mathrm{mg}, 94 \%$) as colorless needles: mp $150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.9,1.8 \mathrm{~Hz})$, $2.46(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.8 \mathrm{~Hz}), 2.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9$ Hz), 1.94 (ddd, $1 \mathrm{H}, \mathrm{J}=17.8,1.8,0.8 \mathrm{~Hz}$), $1.60-1.35(\mathrm{~m}, 6 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right)$ $1735 \mathrm{~cm}^{-1}$; LRMS m/z $278\left(\mathrm{M}^{+}\right)$. Anal. Cal cd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}: \mathrm{C}$, 73.35; H, 9.41. Found: C, 73.26.; H, 9.42.

Entry 4 in Table 2. A mixture of $\mathbf{1 4}(0.20 \mathrm{~g}, 0.71 \mathrm{mmol})$, $\mathrm{ZnBr}_{2}(1.6 \mathrm{~g}, 7.1 \mathrm{mmol}), \mathrm{NEt}_{3}(1.5 \mathrm{~mL}, 11 \mathrm{mmol})$, and TMSCl^{2} $(0.90 \mathrm{~mL}, 7.1 \mathrm{mmol})$ in o-dichlorobenzene (20 mL) was refluxed for 9 h . After the mixture was cooled to rt , the same workup and purification procedure as above gave $\mathbf{1 3}$ ($77 \mathrm{mg}, 39 \%$) as colorless needles, which was identical with the authentic compound in all respects.
(\pm)-(1S*,2S*,3R*,8S*,9R*)-1,4,4,8-Tetramethyl-10-oxotricyclo[6.3.0.0 ${ }^{3,9}$]undecan-2-carboxylic Acid (24). To a solution of $13(22.2 \mathrm{mg}, 80 \mu \mathrm{~mol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v} ; 5$ mL) was added $\mathrm{KOH}(134 \mathrm{mg}, 2.4 \mathrm{mmol})$, and the resulting mixture was refluxed for 63 h . After removal of MeOH under reduced pressure, the aqueous sol ution was washed with $\mathrm{Et}_{2} \mathrm{O}$ and acidified with $10 \% \mathrm{HCl}$. After extraction with CHCl_{3}, the extract was dried and concentrated. The residue was purified by recrystallization from i- $\mathrm{Pr}_{2} \mathrm{O}$ to give 24 ($21.1 \mathrm{mg}, 100 \%$) as colorless plates: $m p 219-221^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.79$ (dd, $1 \mathrm{H}, \mathrm{J}=6.6,1.8 \mathrm{~Hz}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.5 \mathrm{~Hz})$, 2.02 (d, 1H, J $=6.6 \mathrm{~Hz}$), 2.00 (dd, $1 \mathrm{H}, \mathrm{J}=17.5,1.8 \mathrm{~Hz}$), 1.67$1.36(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}$, 3H); IR (CHCl_{3}) 1735, $1695 \mathrm{~cm}^{-1}$; LRMS m/z $264\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$: C, $72.69 ; \mathrm{H}, 9.15$. Found: C, $72.67 ; \mathrm{H}$, 9.19.

Oxidative Decarboxylation of 24. Entry 1 in Table 3. To a solution of $\mathbf{2 4}(57.6 \mathrm{mg}, 0.22 \mathrm{mmol}$) in benzene (3 mL) was added $\mathrm{NaH}(55 \%$ in oil; $14.3 \mathrm{mg}, 0.33 \mathrm{mmol}$) at rt , which was stirred for 30 min . After the addition of $(\mathrm{COCl})_{2}(57 \mu \mathrm{~L}$, 0.65 mmol), the mixture was refluxed for 3 h . After filtration, the filtrate was evaporated to give the corresponding acyl chloride (68 mg as crude). Without further purification, the acyl chloride was used in the following reaction. To a solution of 2-mercaptopyridine N -oxide ($\mathbf{2 5} ; 30.5 \mathrm{mg}, 0.22 \mathrm{mmol}$) in toluene (1 mL) was added NaH (55% in oil; $14.3 \mathrm{mg}, 0.33$ mmol) at rt under an Ar atmosphere, which was stirred for 10 min . After the addition of a solution of the above acyl chloride (67 mg) in toluene (2 mL) and t-BuSH ($0.22 \mathrm{~mL}, 2.0$ mmol) at rt , the mixture was stirred for 3 h at $80^{\circ} \mathrm{C}$ under an O_{2} current. To this was added $\mathrm{P}(\mathrm{OMe})_{3}(0.26 \mathrm{~mL}, 2.2 \mathrm{mmol})$ at rt , and the resulting mixture was stirred for a further 2 h at rt . After the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was then washed with brine, dried, and concentrated. Column chromatography on silica gel (AcOEt:hexane = 1:4, v/v) afforded 26 ($24.7 \mathrm{mg}, 48 \%$) as colorless needles.

Entry 3 in Table 3. To a mixture of S-(1-oxido-2-pyridinyl)-1,1,3,3-tetramethylthiouronium hexafluorophosphate ${ }^{25}$ (27, HOTT; $171 \mathrm{mg}, 0.46 \mathrm{mmol}$) and DMAP ($2.8 \mathrm{mg}, 23 \mu \mathrm{~mol}$) was added a solution of $\mathbf{2 4}(61 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.13 \mathrm{~mL}$, 0.92 mmol) in 1,4-dioxane (2.5 mL), which was stirred for 12 h at rt under an Ar atmosphere. After the addition of t -BuSH $(0.23 \mathrm{~mL}, 2.1 \mathrm{mmol})$, the mixture was stirred for 3 h at $80^{\circ} \mathrm{C}$ under an O_{2} current. To this was added $\mathrm{P}(\mathrm{OMe})_{3}(0.27 \mathrm{~mL}$, 2.3 mmol) at rt , and the resulting mixture was stirred for a further 2 h at rt . After the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the
mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was then dried and concentrated. Column chromatography on silica gel (AcOEt:hexane $=1: 4, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{2 8}(4.3 \mathrm{mg}, 8 \%$) as a col orless solid and the crude of $\mathbf{2 6}$. The crude mixture was further purified by column chromatography on silica gel ($\mathrm{Et}_{2} \mathrm{O}$:benzene $=1: 4, \mathrm{v} / \mathrm{v}$) and recrystallization from cyclohexane-petroleum ether to give 26 ($44.6 \mathrm{mg}, 82 \%$) as colorless needles.

Entry 4 in Table 3. To a solution of $\mathbf{2 4}(11.0 \mathrm{mg}, 42 \mu \mathrm{~mol})$ in benzene (3 mL) were added pyridine ($5 \mu \mathrm{~L}, 62 \mu \mathrm{~mol}$) and $\mathrm{Pb}(\mathrm{OAc})_{4}(37 \mathrm{mg}, 83 \mu \mathrm{~mol})$ at rt , which was refluxed for 8.5 h . After filtration through Celite, the filtrate was washed with $10 \% \mathrm{NaOH}, 10 \% \mathrm{HCl}$, and brine successively. The organic layer was dried and concentrated. Column chromatography on silica gel (AcOEt:hexane $=3: 7, \mathrm{v} / \mathrm{v}$) afforded a diastereomixture ($5: 1$) of acetates ($6.1 \mathrm{mg}, 53 \%$) as a colorless oil. To a solution of the above acetates as a diastereomeric mixture ($17.7 \mathrm{mg}, 64 \mu \mathrm{~mol}$) in MeOH (1.5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(17.6 \mathrm{mg}, 127 \mu \mathrm{~mol})$, and the mixture was stirred for 21 h at rt. After removal of MeOH under reduced pressure and then dilution with AcOEt, the mixture was washed with brine. The organic layer was dried and concentrated. The resulting residue was purified by column chromatography on silica gel (AcOEt:hexane = 3:7, v/v) to give 28 ($14.3 \mathrm{mg}, 40 \%$; 5:1 epimeric ratio) as a colorless solid.
(\pm)-($\left.\mathbf{R R}^{*}, 2 S^{*}, 3 S^{*}, 8 S^{*}, 9 R^{*}\right)$-2-Hydroxy-1,4,4,8-tetramethyltricyclo[6.3.0.0 ${ }^{3,9}$] undecan-10-one (26): mp $129-132^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 4.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.7,1.6 \mathrm{~Hz}), 2.62(\mathrm{~d}, 1 \mathrm{H}$, J $=18.4 \mathrm{~Hz}), 2.37(\mathrm{~s}, 1 \mathrm{H}), \mathrm{I} .85(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=18.4,1.6 \mathrm{~Hz}), 1.65$ (br s, 1H), 1.58-1.37 (m, 6H), $1.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}), 1.04$ $(\mathrm{s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$; IR (CHCl_{3}) 3600, 3450, $1735 \mathrm{~cm}^{-1}$; LRMS m/z $236\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ 236.1776, found 236.1812.
(\pm)-(1R*,3S*,8S*,9R*)-6-Hydroxy-1,4,4,8-tetramethyltricyclo[6.3.0.0 ${ }^{3,9}$]undecan-10-one (28) as a Diastereomixture at C(6) (Epimeric Ratio 5:1): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 4.23-4.12 (m, 0.84 $\times 1 \mathrm{H}$), 3.84-3.73(m, $0.16 \times 1 \mathrm{H}), 2.47(\mathrm{~s}$, $0.84 \times 1 \mathrm{H}), 2.39(\mathrm{~s}, 0.16 \times 1 \mathrm{H}), 2.20-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.77$ $(\mathrm{m}, 1 \mathrm{H}), 1.75-1.22(\mathrm{~m}, 7 \mathrm{H}), 1.083(\mathrm{~s}, 0.84 \times 3 \mathrm{H}), 1.075(\mathrm{~s}, 0.16$ $\times 3 \mathrm{H}), 1.07(\mathrm{~s}, 0.16 \times 3 \mathrm{H}), 1.03(\mathrm{~s}, 0.84 \times 3 \mathrm{H}), 0.97(\mathrm{~s}, 0.16 \times$ $3 \mathrm{H}), 0.96(\mathrm{~s}, 0.84 \times 3 \mathrm{H}), 0.92(\mathrm{~s}, 0.84 \times 3 \mathrm{H}), 0.85(\mathrm{~s}, 0.16 \times$ 3H); IR (neat) 3420, $1735 \mathrm{~cm}^{-1}$; LRMS m/z 236 (${ }^{+}$); HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ 236.1776, found 236.1760 .
(\pm)-(1R*,3S*,8S*,9R*)-1,4,4,8-Tetramethyltricyclo[6.3.0.03,9] undecanc-6,10-dione (29). To a solution of 28 (6.4 $\mathrm{mg}, 27 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added $4 \AA$ molecular sieves (9 mg) and PCC ($8.8 \mathrm{mg}, 41 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. After being stirred for 10 min at $0^{\circ} \mathrm{C}$, the mixture was warmed to rt and stirred for an additional 1 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$ and the addition of Florisil, the mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by column chromatography on silica gel (AcOEt:hexane $=3: 7$, v / v) and recrystallization from i- $\mathrm{Pr}_{2} \mathrm{O}$ to give 29 ($6.3 \mathrm{mg}, 99 \%$) as colorless prisms: mp $141{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.67$ (s, $1 \mathrm{H}), 2.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.7,1.0 \mathrm{~Hz}), 2.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz})$, $2.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.7 \mathrm{~Hz}), 2.17-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $17.3 \mathrm{~Hz}), 1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, 1.08 (s, 3H), 0.99 (s, 3H), 0.97 (s, 3H); IR ($\left(\mathrm{CHCl}_{3}\right) 1735,1690$ cm^{-1}; LRMS m/z $234\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ 234.1620, found 234.1603.

X-ray Crystallography. Crystallographic data were collected at $13.0{ }^{\circ} \mathrm{C}$ on a RIGAKU AFC5R diffractometer with graphitemonochromated $\operatorname{MoK} \alpha(\lambda=0.71 \AA)$ radiation and a rotating anode generator. The structure was sol ved using the programs in teXsan.

Structure of Compound 29. Prismatic crystals of $\mathbf{2 9}$ suitable for X-ray crystallography were grown by slow crystallization from $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{O}$. The compound $\mathbf{2 9}$ belongs to the triclinic space group $P 1$ with $a=8.482(2) \AA, b=11.977(5) \AA, c=7.270-$ (2) $\AA, \alpha=99.65(3)^{\circ}, \beta=107.47(2)^{\circ}, \gamma=104.17(2)^{\circ}, Z=2$, and $\mathrm{D}=1.180 \mathrm{~g} / \mathrm{cm}^{3} . \mathrm{R}=0.040$ and $\mathrm{R}_{\mathrm{w}}=0.037$ for 2640 unique reflections with $\mathrm{I}>3 \sigma(\mathrm{I})$. GOF $=2.98$.
(\pm)-Culmorin (1). To a sol ution of 26 ($47.5 \mathrm{mg}, 0.20 \mathrm{mmol}$) in THF (5.5 mL) at $-78{ }^{\circ} \mathrm{C}$ were added $\mathrm{NH}_{3}(18 \mathrm{~mL})$, MeOH $(5.5 \mathrm{~mL})$, and Li ($41.1 \mathrm{mg}, 5.9 \mathrm{mmol}$). After being stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$, the mixture was quenched with saturated
$\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to rt . After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with brine. The organic layer was dried and concentrated. Column chromatography on silica gel (AcOEt:hexane $=2: 3, \mathrm{v} / \mathrm{v}$) and recrystallization from $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{O}$ afforded $\mathbf{1}(47.9 \mathrm{mg}, 100 \%)$ as col orless needles, whose spectral data were well consistent with the reported ones: ${ }^{1 \mathrm{c}} \mathrm{mp} 167$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.37$ (ddd, $1 \mathrm{H}, \mathrm{J}=6.6,6.6,4.4 \mathrm{~Hz}$), $3.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.9 \mathrm{~Hz}), 1.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}), 1.76(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=4.9 \mathrm{~Hz}), 1.73(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.51-$ $1.24(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}$, 3 H); IR $\left(\mathrm{CHCl}_{3}\right) 3630,3470 \mathrm{~cm}^{-1}$; LRMS m/z $238\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$ 238.1933, found 238.1917.
(\pm)-(1S*,2S*,3R*,8S*,9R*)-1,4,4,8-Tetramethyltricyclo[6.3.0.0 ${ }^{3,9}$]undecan-2-carboxylic Acid (30). To a stirred solution of $\mathbf{2 4}(109 \mathrm{mg}, 0.41 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were slowly added 1,2-ethanedithiol ($0.35 \mathrm{~mL}, 4.1 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.52 \mathrm{~mL}, 4.1 \mathrm{mmol})$, and the mixture was stirred for 23 h at rt . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with brine. The organic layer was dried and concentrated. Column chromatography on silica gel (AcOE t:hexane $=1: 4, \mathrm{v} / \mathrm{v}$) and recrystallization from $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{O}$ afforded the corresponding dithioketal ($136 \mathrm{mg}, 97 \%$) as col orless needles: $\mathrm{mp} 216-218{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.27-$ $3.17(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.53$ (dd, 1H, J = 6.9, 1.6 Hz), $2.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15 \mathrm{~Hz}), 2.30(\mathrm{~s}, 1 \mathrm{H})$, 2.28 (dd, 1H, J = 15, 1.6 Hz), 1.55-1.19 (m, 6H), $1.21(\mathrm{~s}, 3 \mathrm{H})$, $1.02(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 180.7, 72.8, 58.9, 55.6, 55.2, 54.7, 52.1, 51.5, 40.9, 40.4, 37.0, 36.5, 34.0, 29.4, 28.3, 25.9, 22.1, 14.1; IR (CHCl3) 3500, 1700 cm^{-1}; LRMS m/z $340\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2}$ 340.1531, found 340.1502. A suspension of the dithioketal (136 $\mathrm{mg}, 0.40 \mathrm{mmol}$) and W-2 Raney Ni in EtOH (3 mL) was heated for 4.5 h under reflux. After filteration through Celite and concentration, the residue was purified with chromatography on silica gel (AcOEt:hexane $=1: 9, \mathrm{v} / \mathrm{v}$) and recrystallization from i- $\mathrm{Pr}_{2} \mathrm{O}$ to give $\mathbf{3 0}$ ($51 \mathrm{mg}, 51 \%$) as colorless plates: mp $143-144^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.48(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.6,2.2 \mathrm{~Hz})$, $1.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}), 1.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.78-1.66$
(m, 1H), 1.63-1.52 (m, 1H), 1.50-1.16 (m, 9H), $1.01(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 182.2, 56.9, 53.8, 53.1, 52.2, 44.2, 40.7, 35.4, 33.8, 30.1, 29.8, 29.3, 28.4, 22.0, 21.9, 14.4; IR $\left(\mathrm{CHCl}_{3}\right) 3500,1695 \mathrm{~cm}^{-1}$; LRMS $\mathrm{m} / \mathrm{z} 250\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}$: $\mathrm{C}, 76.75 ; \mathrm{H}, 10.47$. Found: C, 76.46; H, 10.32.
(\pm)-Longiborneol (2). To a mixture of HOTT ($27 ; 261 \mathrm{mg}$, 0.70 mmol) and DMAP ($5.7 \mathrm{mg}, 47 \mu \mathrm{~mol}$) was added a sol ution of $\mathbf{3 0}(59 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.19 \mathrm{~mL}, 1.4 \mathrm{mmol})$ in 1,4-di oxane (2.4 mL), which was stirred for 14 h at rt under an Ar atmosphere. After the addition of t-BuSH ($0.24 \mathrm{~mL}, 2.1$ mmol), the mixture was stirred for 12 h at $80^{\circ} \mathrm{C}$ under an O_{2} current. To this was added $\mathrm{P}(\mathrm{OMe})_{3}(0.28 \mathrm{~mL}, 2.3 \mathrm{mmol})$ at rt , and the resulting mixture was stirred for a further 2 h at r. After the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was then dried and concentrated. Column chromatography on silica gel (AcOEt: hexane $=1: 9, \mathrm{v} / \mathrm{v}$) afforded $2(51 \mathrm{mg}, 51 \%)$ as colorless prisms (from pentane), $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$ [lit. ${ }^{8} \mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$], whose spectral data were identical with those reported for $(\pm)-2 .{ }^{8}$

Acknowledgment. We thank Dr. Chizuko Kabuto (Instrumental Analysis Center for Chemistry, Faculty of Science, Tohoku University) for doing the X-ray analysis. We are grateful to Emeritus Professor Keiichiro Fukumoto of Tohoku University for the kind discussion. This work was partly supported by a Grantin Aid for Research on Priority Areas (Nos. 11119206 and 11147202) from the Ministry of Education, Science, Sports and Culture, J apan.

Supporting Information Available: X-ray crystallographic data for compound 29 and copies of ${ }^{1} \mathrm{H}$ NMR spectra (300 MHz) for compounds $\mathbf{1}, \mathbf{1 9}, \mathbf{2 3}, \mathbf{2 6}$, and 28. This material is available free of charge via the Internet at http://pubs.acs.org.

[^7]
[^0]: ${ }^{\dagger}$ E-mail: mihara@mail.pharm.tohoku.ac.jp.
 (1) (a) Ashley, J. N.; H obbs, B. C.; Raistrick, H. Biochem. J. 1937, 31, 385-397. (b) Barton, D. H. R.; Werstiuk, N. H. Chem. Commun. 1967, 30-31. (c) Barton, D. H. R.; Werstiuk, N. H. J. Chem. Soc. C 1968, 148-155.
 (2) (+)-Longiborneol: (a) Briggs, L. H.; Sutherland, M. D. J. Org. Chem. 1942, 7, 397-407. (b) Akiyoshi, S.; Erdtman, H. Kubota, T. Tetrahedron 1960, 9, 237-239.
 (3) (-)-L ongi borneol: Matsuo, A.; Nakayama, M.; Hayashi, S. Chem. Lett. 1973, 769-772.
 (4) (a) Review: Dev, S. Acc. Chem. Res. 1981, 14, 82-88. (b) Simonsen, J. L. J . Chem. Soc. 1920, 117, 570-578. (c) Lei, B.; F allis, A. G. J. Org. Chem. 1993, 58, 2186-2195 and references cited therein.
 (5) Nayak, U. R.; Dev, S. Tetrahedron Lett. 1963, 243-246.
 (6) (a) Strongman, D. B.; Miller, J. D.; Calhoun, L.; Findlay, J . A.; Whitney, N. J. Bot. Mar. 1987, 30, 21-26. (b) Wang, Y. Z.; Miller, J . D. Phytopath. Z. 1988, 122, 118-125. (c) König, G. M.; Wright, A. D. Planta Med. 1996, 62, 193-211.
 (7) Roberts, B. W.; Poonian, M. S.; Welch, S. C. J. Am. Chem. Soc. 1969, 91, 3400-3401.

[^1]: (8) (a) Welch, S. C.; Walters, R. L. Synth. Commun. 1973, 3, 419423. (b) Welch, S. C.; Walters, R. L. J. Org. Chem. 1974, 39, 26652673.
 (9) (a) Kuo, D. L.; Money, T. J . Chem. Soc., Chem. Commun. 1986, 1691-1692. (b) Kuo, D. L.; Money, T. Can. J. Chem. 1988, 66, 17941804.
 (10) Reddy, R. T.; Nayak, U. R. Indian J . Chem. 1986, 25B, 457461.
 (11) Ihara, M.; Makita, K.; Fujiwara, Y.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1996, 61, 6416-6421.
 (12) (a) Review: Ihara, M.; Fukumoto, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1010-1022. (b) Ihara, M.; Makita, K.; Tokunaga, Y.; Fukumoto, K. J . Org. Chem. 1994, 59, 6008-6013 and references cited therein.
 (13) Recent efforts of intermolecular version: (a) Nagaoka, H.; Shibuya, K.; K obayashi, K.; Miura, I.; Muramatsu, M.; Yamada, Y. Tetrahedron Lett. 1993, 34, 4039-4042. (b) Maiti, S.; Bhaduri, S.; Achari, B.; Banerjee, A. K.; Nayak, N. P.; Mukherjee, A. K. Tetrahedron Lett. 1996, 37, 8061-8062. (c) Hagiwara, H.; Yamada, Y.; Sakai, H.; Suzuki, T.; Ando, M. Tetrahedron 1998, 54, 10999-11010.

[^2]: (14) A part of this work was published as a preliminary communication: Takasu, K.; Mizutani, S.; Noguchi, M.; Makita, K.; Ihara. M. Org. Lett. 1999, 1, 391-393.
 (15) Takano, S.; Sato, T.; I nomata, K.; Ogasawara, K. J . Chem. Soc., Chem. Commun. 1991, 462-464.
 (16) Mash, E. A.; Hemperly, S. B.; Nelson, K. A.; Heidt, P. C.; Deusen, S. V. J. Org. Chem. 1990, 55, 2045-2055.

[^3]: (17) Miller, R. D.; McK ean, D. R. Synthesis 1979, 730-732.
 (18) (a) Ihara, M.; Taniguchi, T.; Makita, K.; Takano, M.; Ohnishi, M.; Taniguchi, N.; Fukumoto, K.; K abuto, C. J. Am. Chem. Soc. 1993, 115, 8107-8115. (b) Ihara, M.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1994, 59, 8092-8100.
 (19) I hara, M.; Taniguchi, T.; Yamada, M.; Tokunaga, Y.; Fukumoto, K. Tetrahedron Lett. 1995, 34, 8071-8074.
 (20) (a) Ihara, M.; Makita, K.; Takasu, K. J . Org. Chem. 1999, 64, 1259-1264. (b) Snowden, R. L. Tetrahedron Lett. 1981, 22, 97-100. (c) Snowden, R. L. Tetrahedron 1986, 42, 3277-3290.
 (21) Takano, S.; Moriya, M.; Ogasawara, K. J . Org. Chem. 1991, 56, 5982-5984.
 (22) Pattenden, G.; Teague, S. J. Tetrahedron 1987, 43, 5637-5652.

[^4]: (23) Classon, B.; Liu, Z.; Samuelsson, B. J. Org. Chem. 1988, 53, 6126-6130.

[^5]: (24) Barton, D. H. R.; Crich, D.; MotherwelI, W. B. Tetrahedron 1985, 41, 3901-3924.
 (25) Garner, P.; Anderson, J. T.; Dey, S.; Youngs, W. J .; Galat, K. J. Org. Chem. 1998, 63, 5732-5733.

[^6]: (26) Sheldon, R. A.; K ochi, J. K. Org. React. 1972, 19, 279-421.
 (27) 29 was named isoculmorin diketone by Nayak: Suryawanshi,
 S. N.; Nayak, U. R. Indian J. Chem. 1979, 18B, 190-191.
 (28) Boivin, J.; da Silva, E.; Ourisson, G.; Zard, S. Z. Tetrahedron Lett. 1990, 31, 2501-2504.

[^7]: J O000185S

